
 
www.iaset.us                                                                                                                                                                                                        editor@iaset.us 

 

BAYESIAN ESTIMATION OF THE SHAPE PARAMETER OF DOUBL E PARETO 

DISTRIBUTION UNDER DIFFERENT LOSS FUNCTION 

Arun Kumar Rao & Himanshu Pandey 

Research Scholar, Department of Mathematics & Statistics, DDU Gorakhpur University, Gorakhpur, India 

 

ABSTRACT 

In this paper, the double Pareto distribution is considered for Bayesian analysis. The expressions for Bayes estimators of 

the parameter have been derived under squared error, precautionary, entropy, K-loss, and Al-Bayyati’s loss functions by 

using quasi and gamma priors. 
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1. INTRODUCTION 

The double Pareto distribution has been proposed by Reed [1] as a model for heavy-tailed phenomena. Al-Athari [2] 

considered the parameter estimation for this distribution. The probability density function of double Pareto distribution is 

given by 
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The joint density function or likelihood function of (1) is given by 
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The log likelihood function is given by 
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Differentiating (3) with respect to θ and equating to zero, we get the maximum likelihood estimator of θ which is 

given as 
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2. BAYESIAN METHOD OF ESTIMATION 

The Bayesian inference procedures have been developed generally under squared error loss function 
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The Bayes estimator under the above loss function, say, sθ
∧

 is the posterior mean, i.e., 
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Zellner [3] and Basu & Ebrahimi [4] have recognized that the inappropriateness of using symmetric loss function. 

Norstrom [5] introduced precautionary loss function is given as 
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The Bayes estimator under this loss function is denoted by Pθ
∧

 and is given by 
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Calabria and Pulcini [6] points out that a useful asymmetric loss function is the entropy loss 
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= Also, the loss function ( )L δ  has been used in Dey et al. 

[7] and Dey and Liu [8], in the original form having 1p .=  Thus ( )L δ  can written be as 

( ) ( ) 1eL b log ;  b>0.δ δ δ= − −                                                                                                                     (9) 

The Bayes estimator under entropy loss function is denoted by Eθ
∧

 and is obtained by solving the following 

equation 
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Wasan [9] proposed the K-loss function which is given as 
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Under K-loss function the Bayes estimator of θ is denoted by Kθ
∧

 and is obtained as 
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Al-Bayyati[10] introduced a new loss function which is given as 
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Under Al-Bayyati’s loss function the Bayes estimator of θ is denoted by Alθ
∧

 and is obtained as 
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Let us consider two prior distributions of θ to obtain the Bayes estimators. 

• Quasi-prior: For the situation where we have no prior information about the parameter θ, we may use the quasi 

density as given by 
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Where d = 0 leads to a diffuse prior and d = 1, a non-informative prior. 

• Gamma prior: Generally, the gamma density is used as prior distribution of the parameter θ given by 
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3. POSTERIOR DENSITY UNDER ( )1g θ
 

The posterior density of θ under ( )1g θ , on using (2), is given by 
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Theorem 1: On using (17), we have 
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Proof By definition, 
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From equation (18), for 1c = , we have 
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From equation (18), for 2c = , we have 
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From equation (18), for 1c = − , we have 
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From equation (18), for 1c c= + , we have 

( ) ( )
( )

( )1

1

1

2

1

cn
c i

i

n d c x
E log

n d a
θ

− +
+

=

Γ − + +   =   Γ − +   
∑ .                                                                                        (22) 

4. BAYES ESTIMATORS UNDER ( )1g θ  

From equation (6), on using (19), the Bayes estimator of θ under squared error loss function is given by 
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From equation (8), on using (20), the Bayes estimator of θ under precautionary loss function is obtained as 
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From equation (10), on using (21), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (19) and (21), the Bayes estimator of θ under K-loss function is given by 
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From equation (14), on using (18) and (22), the Bayes estimator of θ under Al-Bayyati’s loss function comes out 

to be 
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5. POSTERIOR DENSITY UNDER ( )2g θ  

Under ( )2g θ , the posterior density of θ, using equation (2), is obtained as 
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Theorem 2: On using (28), we have 
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Proof By definition, 
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From equation (29), for 1c = , we have 
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From equation (29), for 2c = , we have 
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From equation (29), for 1c = − , we have 
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From equation (29), for 1c c= + , we have 
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6. BAYES ESTIMATORS UNDER ( )2g θ  

From equation (6), on using (30), the Bayes estimator of θ under squared error loss function is given by 

( )
1

1

n
i

S

i

x
n log

a
θ α β

−
∧

=

  = + +  
  

∑ .                                                                                                                 (34) 

From equation (8), on using (31), the Bayes estimator of θ under precautionary loss function is obtained as 
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From equation (10), on using (32), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (30) and (32), the Bayes estimator of θ under K-loss function is given by 
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From equation (14), on using (29) and (33), the Bayes estimator of θ under Al-Bayyati’s loss function comes out 

to be 
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CONCLUSIONS 

In this paper, we have obtained a number of estimators of parameter of double Pareto distribution. In equation (4) we have 

obtained the maximum likelihood estimator of the parameter. In equation (23), (24), (25), (26) and (27) we have obtained 

the Bayes estimators under different loss functions using quasi prior. In equation (34), (35), (36), (37) and (38) we have 

obtained the Bayes estimators under different loss functions using gamma prior. In the above equation, it is clear that the 

Bayes estimators depend upon the parameters of the prior distribution. We therefore recommend that the estimator’s choice 

lies according to the value of the prior distribution which in turn depends on the situation at hand. 
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