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ABSTRACT

In this paper, the double Pareto distribution ime@ered for Bayesian analysis. The expression8&yes estimators of
the parameter have been derived under squared epr@cautionary, entropy, K-loss, and Al-Bayyatoss functions by

using quasi and gamma priors.
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1. INTRODUCTION

The double Pareto distribution has been propose®Rdnd [1] as a model for heavy-tailed phenomenaAthari [2]
considered the parameter estimation for this dhigtidon. The probability density function of doul®areto distribution is

given by

9 a g+1 )
f (x;@) :5(;j 6X-(a+l)e—€x a %= a @)

The joint density function or likelihood functior (1) is given by

_ —(6+1)zn:|og A
f(x;0)=(2a)" g% = 9 )
The log likelihood function is given by
Y X
log f(x;6) =-nlog2a+ nlogd—(6+1)>" Iog{—j. ©)
i=1 a
Differentiating (3) with respect t® and equating to zero, we get the maximum likelthestimator ob which is
given as
o n
6= 4)
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2. BAYESIAN METHOD OF ESTIMATION

The Bayesian inference procedures have been dedefmmerally under squared error loss function

L(B,G):(B—HJZ. ©

o
The Bayes estimator under the above loss funcsiay@s is the posterior mean, i.e.,

Bs =E(6). (6)

Zellner [3] and Basu & Ebrahimi [4] have recognizbdt the inappropriateness of using symmetric fosstion.
Norstrom [5] introduced precautionary loss functisigiven as

@)

. 2
i (e- ej
L(e,ej SN
6
g
The Bayes estimator under this loss function isotethby & and is given by

- %

6-=|E(¢")]". ®
Calabria and Pulcini [6] points out that a use&yrametric loss function is the entropy loss

L(6) O[&° - p log,(3)~1]

O

g O

Where5=5, and whose minimum occurs &= 8.Also, the loss functiorL(J) has been used in Dey et al.
[7] and Dey and Liu [8], in the original form hagnp =1. Thus L (5) can written be as

L(6)=b[&~log,(8)~1]; b>0. 9)

o
The Bayes estimator under entropy loss functiodeisoted by@e and is obtained by solving the following

equation

o = [E(%ﬂ_l. (10)

Wasan [9] proposed the K-loss function which isegias
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0
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i (e_ej
L(H,ﬁj =7 (11)

o
Under K-loss function the Bayes estimatopao$ denoted bydx and is obtained as

1

0 E(H) 2

Ok = : (12)
{E(J/ 6’)}

Al-Bayyati[10] introduced a new loss function whiishgiven as

O O 2
L(B,H} =¢° (9—9) . (13)

g
Under Al-Bayyati’s loss function the Bayes estimaibf is denoted byda and is obtained as

£(7)

Let us consider two prior distributions ®@to obtain the Bayes estimators.

(14)

* Quasi-prior: For the situation where we have nompmformation about the paramet&rwe may use the quasi

density as given by
1
91(49)=0—d ;8>0,d=0, (15)

Whered = 0 leads to a diffuse prior ardi= 1, a non-informative prior.

e Gamma prior: Generally, the gamma density is usagtiar distribution of the paramet@&igiven by

9,(6) = r’Ea) Get 160, (16)

3. POSTERIOR DENSITY UNDER ¢, (6)

The posterior density &f underg, (9) , on using (2), is given by

o —(H+1)§;Iog(§j ~
f (/) = (2a) " 6" - g-¢
T(Za)_n " e_(gﬂ);bg(aje‘d %
0
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r(n-d+1) ¢

Theorem 1:0n using (17), we have

(o)=L Sl )]

=1

Proof By definition,

E(6)=[6°1(6/x) d6

n n+d-1
| )‘D e
- (; og( a Te—(n—cﬂc) e—H;Iog[gj )

r(n+d-1)

(.Z;: log (EDH_M M(n-d+c+1)
r(n-d+1) (izzl:log ();jjn—dﬂ&l

s (o))

From equation (18), foc =1, we have

£(6)=(n- d+1){i Iog(%ﬂ_l.

i=1

From equation (18), foc = 2, we have

E(HZ) =[(n-d+2)(n- d+1)]LZ:‘ Io{%ﬂ_z.

From equation (18), fa¢ = —1, we have
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E(%j: (n_ld)élog(%j. (21)

From equation (18), foc = c+1, we have

(o) B3

i=1

4. BAYES ESTIMATORS UNDER g, (6)

From equation (6), on using (19), the Bayes estmaitd under squared error loss function is given by

to be

55 =(n-d+1) {Zn: Iog(%ﬂ_l. (23)

i=1
From equation (8), on using (20), the Bayes estimaitd under precautionary loss function is obtained as

1

6D?p =[(n-d+2)(n- d+1)]2(§ Ioi%D_l. (24)

From equation (10), on using (21), the Bayes estimaf 6 under entropy loss function is given by

b = (n- d)(zn: Iog(%D_l. (25)

i=1

From equation (12), on using (19) and (21), theeBagstimator o9 under K-loss function is given by

b = [(n-d+1)(n- d)]% [.anl Io{%}j_l. (26)

From equation (14), on using (18) and (22), thedBagstimator o® under Al-Bayyati’s loss function comes out

BAI =(n-d+ c+1)(zn: Iog(%j]_l. 27)

i=1

5. POSTERIOR DENSITY UNDER 0, ()

Underg, («9) , the posterior density &f using equation (2), is obtained as
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(28)
Theorem 2:0n using (28), we have
E(@C):—r(n+a+c) ﬁ+i|og(ﬁJ (29)
r(n+a) a
Proof By definition,

E(6°)=[6°f (6/x) dB

_ [,8 + .221: log ();D Ten+a+c—1 e-[mémg();j}e

r(n+a)

dg

0

:(ﬂ+élog(znw F(n+a+d
r(n+a) (ﬂ+glog ();Dmmc

e oL
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From equation (29), fa¢ =1, we have

E(6) :(n+a)(ﬁ+§ IogLED_l. (30)

From equation (29), fa@ = 2, we have

E(HZ) :[(n+a+1)(n+a)](ﬁ+§ Iog(%D_z. (31)

From equation (29), f&@ = —1, we have

(3l go3)

From equation (29), fa¢ = c+1, we have

" _r(n+a+c+1) n X —(c+1)
E(H )— (n+a) £ﬁ+i§log(an . (33)

6. BAYES ESTIMATORS UNDER g, (6)

From equation (6), on using (30), the Bayes estimaitd under squared error loss function is given by

to be
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fs =(n+a)(ﬂ+ilog(%jj_l. (34)

i=1

From equation (8), on using (31), the Bayes estimaitd under precautionary loss function is obtained as

. :[(n+a+1)(n+a)]%(,g+§ Iog(%)j_l. )

From equation (10), on using (32), the Bayes estimaf 6 under entropy loss function is given by

i=1

BE:(n+a+1)(,8+Zn:|og(§D_l. (36)

From equation (12), on using (30) and (32), thedBagstimator df under K-loss function is given by

b =[(n+a)(n+a-1)] (,8+Zlog( D @)

From equation (14), on using (29) and (33), theeBagstimator o® under Al-Bayyati’s loss function comes out
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O :(n+a+c)[/3+zn: IOg(%Jj_l' (38)

i=1
CONCLUSIONS

In this paper, we have obtained a number of estirmaif parameter of double Pareto distributionedation (4) we have
obtained the maximum likelihood estimator of thegmaeter. In equation (23), (24), (25), (26) and) (@& have obtained
the Bayes estimators under different loss functiesiag quasi prior. In equation (34), (35), (3&7)X and (38) we have
obtained the Bayes estimators under different fosstions using gamma prior. In the above equatibis, clear that the
Bayes estimators depend upon the parameters pfitredistribution. We therefore recommend thateks@mator’s choice

lies according to the value of the prior distrilbbatiwhich in turn depends on the situation at hand.
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